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Introduction

De�nition 1.

We consider the following two�parameters generalized inverted

exponential cumulative distribution function:

F (t) = 1−
(

1− e−
δ
t

)a
(1)

for t > 0, δ > 0, a > 1.
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Introduction

De�nition 2. (Hausdor� (1962), Sendov (1990))

The Hausdor� distance (the H�distance) ρ(f, g) between two interval

functions f, g on Ω ⊆ R, is the distance between their completed graphs

F (f) and F (g) considered as closed subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||}, (2)

wherein ||.|| is any norm in R2, e. g. the maximum norm

||(t, x)|| = max{|t|, |x|}; hence the distance between the points

A = (tA, xA), B = (tB, xB) in R2 is ||A−B|| = max(|tA−tB|, |xA−xB|).

Purposes:

• study some properties of the family (1) and prove estimate for the

�saturation� - d about Hausdor� metric;

• consider modi�ed families of adaptive functions with �polynomial

variable transfer� with applications to the Antenna�feeder Analysis.
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Main result

�Saturation� - d in the Hausdor� sense to the horizontal
asymptote

F (d) = 1− d, (3)

i.e. d is the solution of the nonlinear equation

e
δ
d − 1

1− d
1
a

= 0.

Special functions

G(d) = e
δ
d +K

1

d
1
a

= 0, (4)

where

K(a, d) =
−d

1
a

1− d
1
a

:= K

H(d) = e
δ
d
+d −K ln δa = 0. (5)
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Main result

Theorem 1.

For su�ciently small values of δ > 0 and d ≤ 1
8 for the �saturation� - d

we have

d ≈ δ

ln ln 1

(δa)
1
7

. (6)

5 / 16



Numerical experiments

Computational examples

δ a d computed by (4) d computed by (6)

0.01 2 0.0430197 0.0364409

0.001 3 0.027736 0.0147084

0.005 4 0.0123349 0.00451356

0.005 6 0.00835236 0.00330417

Case: δ = 0.01; a = 2;
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Model with �polynomial variable transfer�

F ∗n(t) = 1−
(

1− e−
δ
|f(t)|

)a
f(t) =

n∑
i=0

ait
i, a0 = 0.

(7)
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Model with �polynomial variable transfer�

Examples:

F ∗3 (t) = 1−
(

1− e−
δ

|t(1−t)(2−t)(3−t)|
)a
.

A typical ��lter characteristic� by using model F ∗3 (t) for
δ = 2.4, a = 3.5
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Model with �polynomial variable transfer�

Examples:

Consider the function |F ∗6 (t)| for t = b cos θ + c

A typical �emitting chart� using |F ∗6 (t)| for
n = 6, δ = 0.22, a = 1.1, a0 = 0, a1 = −0.1, a2 = 1.1,
a3 = −1.1, a4 = 0.15, a5 = 0.5, a6 = −0.02, b = −1.2, c = 0.001
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Some inverted cumulative distribution functions

New inverse Weibull cumulative
(A�fy, Shawky, Nassar (2021))

F1(t) = 1−
ln

(
1 + δ − δe−

δ
t

)
ln δ

(8)

Estimate for the �saturation� - d about Hausdor� metric
(Kyurkchiev (2020))

d ≈ δ

1 + ln
(
ln
(
1
δ

)) , (9)

for su�ciently small values of δ and d ≤ 1
2
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Some inverted cumulative distribution functions

F2(t) = 1− ln

(
1 + e− ee−

δ
t

)
F3(t) =

1−
(
1−e−

δ
t

)a
1+

(
1−e−

δ
t

)a

F4(t) = 1−
(

1− e−( δt )
a)b

F5(t) =
1−

(
1−e−( δt )

a)b
1+

(
1−e−( δt )

a)b
F6(t) = eα(1+λt

−φ)−2η−1
eα−1 F7(t) =

(
1−

(
1− e−

δ

tb

)l)m
F8(t) = 1−

(
1−

(
αe
−λt −1
α−1

)φ)b
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Model with �polynomial variable transfer�

Adaptive function of Gumbel�type F7(t)

G7(t) = A

(
1−

(
1− e−δf(t)−b

)l)m
, (10)

where

f(t) =

n∑
i=0

ait
i; a0 = 0.
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Model with �polynomial variable transfer�

Simulation using |G7(θ)| with
A = 1.33; δ = 2.95; b = 0.15; l = 1.5; m = 0.3; r = 1.59; c = −0.39
for �xed f(t) = t(1− t)(0.7− t)(0.5− t), where t = r cos θ + c
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Some remarks

Remark 1

Modi�cation of the model (8)

F1(t) = 1−
ln

(
1 + δ − δe

−( δt )
δ
)

ln δ
, (11)

which can be considered as an adaptive function.
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Some remarks

Remark 2 (technical result for the basic model F (t))

Lemma 1. The following inequality holds

F0(t) ≤ F (t) ≤ F00(t),

where

F0(t) = 1−
(
δ

t

)α
and F00(t) = 1−

(
δ

δ + t

)α
. (12)

15 / 16



Thank you for your
attention!
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